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e THE SYNTHESIS OF TERNARY FUNCTIONS UNDER FIXED POLARITIES AND TERNARY I2L CIRCUITS
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[ Abstract

This paper discusses the expansion of multiple-
value functions based upon modulo-algebra and
Kronecker product. A transform algorithm of the
expansion coefficlients of various polarities, and
their minimisation are proposed. Ternary function
realizations using IZL technology are finally con-
sidered, ”
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List of Symbols

n: nunber of independent variables

x4, = 0 to n-1,x; ¢ {0,1,2}: 1independent {input
variables

£(xy.1pesX),Xg), abbreviated to f(x): function of
the x; {nput variables, f(x) ¢ {(0,1,2}

xg + x4t arithmetic sum of xy and x

xy @ "x4: mod-3 addition of x; and X4

XgeX4: mod=3 multiplication of xy and x

*1,1 = 0 to n=1l: varlous polarities of variable Xy

Xyt o=x @1

?12 -X1®¢.

igz complement operation on variable Xy»
B {5'!11f5)xi
™ 0 otherwise,

X{ A Xj: mninimum of x4 and x
xg V xy: maximum of xy and xj
B
Xy Voxyi complement of maximum of x4 and Xy
B B~ Vx, if B> Vx
V- { (x j) Xy j

0 otherwise

U¢(a,8,Y,x): Universal-logic-module for ternary
functions, based upon Reed-Muller expansion,
i.e. modulo-algebra expansion
Up(g,n,x): basic Universal-logic-module for ter-
nary functions, based upon modulo-algebra ex-
pansion Up(&,n,x) = ¢ ® nx
F): coluan vector whose entries are the 3B values
of f(x), arranged in increasing order of y,
n-1
y=1I x13‘
1=0
Lg(K)]: coefficient column vector based upon
modulo-algebra expansion under the polarity
Knoy £.-1 eoskp21h Kghge where K,L are the
B 1&.21%‘1 ex}»r%nt%ng of kpojeeskikgy 2p-1
ese L4140, respectively
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[T}: transform matrix from B} to F}

-1
[T] : tranaform matrix from F)] to B]
® : Kronecker product
n=1

Bin): = hy) @ oo © () @ Ay

[P, ): transform matrix of expansion coefficients
l" whenx+x @ k
["1): trensform matrix of expansion coefficients

when x + (2 + 1)x
[P).[T): product of matrices over GF(3)

Introduction

Several wmodulo-algebra expansions of multiple-
valued functions have been proposed [1]-(3].

Lately the wmodulo~algebra expansion of multiple-
valued functions over Galois field with q numbers,
where q is a prime number or a power of a prime
number, has been investigated [4]. We will discuss
the transform between F] and the Reed-Muller expan-
sion coefficient column matrix B], and also among
various B(K)] under different polarities in section
2 by means of the Kronecker product. Minimal
modulo-algebra expansion for ternary functions
under fixed polarities is further considered.

According to the modulo-algebra expansion, a
Universal-logic-module Us can be introduced [5],
where

Ug(a,B,7,x) =a @ Bx @ vy x? (1)

It has been shown that any ternary function may be
realized by the use of only this kind of module.
Here in section 3 it will be shown that such a
Universal-logic-module Ug¢(a,B,7,x) can be composed
of two basic Universal-logic-modules Un(E,n,x),
where Up(§,n,x) = € @ n x.

The realization of multiple-valued functions using
I2L circuits can be found published [6),[7). In
section 4 a number of further 12L circuits realiz-
ing ternary functions are presented.

Modulo-algebra Expansion of Multiple-Valued
unctions under fixed polarities
It 18 well known that a single-variable ternary
function can be written as:

- 2
£(x) bo ® blx ® bzx
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Define F] as a column vector of a function f, as
previously defined. Define B] as the Reed-Muller
coefficient column vector for f based upon modulo-
algebra expansion. Define (T] as transform matrix
from B} to Fl.

For a single variable, we have:

Fl = £ £ £ ]t (2)
012
where fo of ] 'fz correspond to £(0),£f(1),£f(2) and
£(0) = bo,
f(l) = b°®bl®bz, (3)
£(2) = bo@fbl @b, “
B] = boblbzl (4)
b
00 ol 02 0
F] = [T).B) = |T T T |.D» (5)

Substituting equatjon (3) into (2), and comparing
the result with (5), the transform matrix may be

obtalned:

1 00
(t] = {1 1 1 (6)
1 21

1
The inverse transform [T] is termed transform
matrix from F) to B]:

8] =(11"" F) %2

-1
Similarly, [T} can be determined as follows:
(T) = 0 2 1 (8)

-1
Note, both [T) and [T] = here are over a single
variable. For a two-variable ternary function, we
have:

2
f(xx.xo) b0 Obl x°®b2x°®b3xl®b“xlx°

V3 2 2 2,2
@bsxlxoebsxlab7xlxo®b8xlxo (9)

In accordance with the Kronecker product and its
properties, the above equation wmay be simplified
to:

£(x,,x)) = ((lxlx'f) ® (1x°xg)l.B]. (10)

where @® denotes the Kronecker product. It may
be proved that there are the following relations:

®2

F] = [T] «B] (11)
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-1 2
and Bl-{[‘l‘l }0 .F) (12)
where
100 000 oo?
111 000 000
121 000 000
> 100 100 100
m® = [(TI@IT)= 111 111 111 (13)
121 121 121
100 200 100
111 222 111
Y 121 212 121
[T00 000 000
021 000 oo—]
222 000 000
000 200 100
-1 2 -1 -1
{[T] }0 =[T] ®IT] = 000 012 021
000 111 222
200 200 200
012 012 012
111 111 111]
(14)

Similarly for n-variable ternary functions, the
following equations may be derived:

n-1
f(xnzi...xl,xo) -[1?0 (lxixf)].a] (15)
F] = [T] L .B] (16)
3 = {7} O e an

Recalling that the Reed-Muller expansion of a bin-
ary function may be derived under different polar-
ities of the input variables, the concept of vari-
able -polarity can be introduced in the multiple-
valued function case as well [8,9]). Consider the
generalized modulo-algebra expansion of an
n-variable ternary function:

4 . n-1
f(z.(“_l...xl.).(o) -[1?0 (liiif)].ﬂ].
b°®blx°®b2x§® Teen

® 90
b x2,.x2x2 (18)
® ERET ) U

where X 1s defined as the polarity-expression of
x, where it takes a different output value for each
possible input value, i.e. there is no loss of
information. In ternary system each variable may
take six possible polarities, including the vari-
able value itself. They are shown in Table 1.

In the above table the entries in the left column
are corresponding modulo-algebra expansions of var-
ious polarity-expressions of variable x4+  Note
that the last three entries are mod-3 products of
the corresponding above entries and constant two,
Thus a generalized equation can be obtained:

%1 = (2 e 1)-()‘1 @ k) , 19)
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X4 01 2

1 @ x4 1 20

l1 2 ® x 2 01
2xq 021

2 ® 2 210

1 © 2x 1 02

Table 1 The polarities of a ternary variable xq
k = 0,1,2 and 2 = 0,1

Therefore there are (3:!)" = 60 possible n-variable
ternary modulo-algebra expansions. It 1is said to
be the unmodified form when:

£=0, k=0

The above transform (19) can be divided into two
steps. The first transform {s termed the k-
transform, in which we ccasider £ = 0. The second
transforn {s termed the t-transform. Now let us
consider the k-transform. Take a single-variable
function as an example.

Suppose
£(x) = b{k) @ bk @ bgk).iz
- [1§§2].[bgk)b§k)bgk)]t 20)

Consider the k-transform
X=x ® k, k=0,1,2 (21)

1£ b(0) 44 expressed by b,, l.e. b, = bao). then
the 3tandard form (k = 0, 1 = 0) may be Bbtained:

b
f(x) = bo eblxebzxz - [lxxz]. b (22)
b
From (21)we obtain:
1 k k2
(1%%2) = (1xx2). |0 1 2 (23)
0 01
and
1 2k k2
(1xx2) = (1%%2). |0 1 & (24)
0 0 1

1f we define

T o

() = 01 k (25)
0 0 1]

and
T & &2
-1

(B = [0 1 2 (26)

Lo_o 1

Substituting (24) into (22) and comparing with
(20), we obtain:

) - (2,.8)
Similarly the reverse ctransform is as follows:
-1
B = (p) 3K

For s n-variable ternary system, 3" different
modulo~algebra expansion coefficient vectors

B(K)]

can be derived if each variable %; = x; @ kg

takes every possible value, where K 1is dec%ml
number of ternary kp_j«..k; ko y K = 0,1,.043%1,

The following equation may be obtained by using a
Kronecker product and the equation (25):

-1
B(K)] - {'}g “’u,‘}"’] (27)
i=0

It 18 obvious that the complexity of the various
modulo-algrbra expansion coefficient vectors B K)]
of a function varies with K. The more zero-coeff-
icients in B(K)], i.e. the fewer the necessary
product-terms in the modulo-algebra expansi.n, the
simpler the function form.

Example 1

Consider a two-variable ternary function expressed
by Fig.l. From the K-map 1its column vector {s

F)=020210020}*
p 8]

Ao

[

1

2

Fig.l Example 2-variable

oInjo o
Ol=|rnl-
oin|oie

ternary function

The unmodified expansion coefficient vector can be
obtained from the equations (12) and (14):

Bl=0111211 21}t

Therefore its modulo-algebra expansion is as
follows:

- 2 2
f(xl,xo) X ® x¢ ® x, ® 2xlxo exlxo

2 2 242
(<) x? @ 2xlxo ® x2x2
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When the eight other possible polarities are con-
sidered, it is found that there are the least non-
zero coefficients when k l. 2, ko- l, {.¢. K= 7,

The corresponding expansion coefficient vector can

be derived from the equations (25) and (27):

111 [i21
B) = tp,l @ (7, 1).8] = |lo12|® fo11]|.B

001 001

(121121121 o] o]
011011011 1 2
001 001 001 | 1 0
000 121 212 | 1 0
000011022 2f =0
000 001 002 1 0
000 000 121 | 1 0
000 000 021 | 2 0
| 000 000 001 ) 1] 1]

Its corresponding modulo-algebra expansion there-
fore is as follows:

£(x,x ) = z;o (">) 7}.75 '

After choosing the optimum K, further consider the
determination of optimum L. where L is the decimal

expression of binary fp-)eelyy Ly ¢ (0,1). Similarly,

we may obtain transforms corresponding to a re-
placement of & = (¢ @® 1).x. For a single-variable
ternary function, we find:

.(K)l . l'll.ln(n)
49 - '™ a®) =
vhere
1 0 0
o - t'nte fo w0 (29)
0 0 1

It can be seen that the t-transfora does not change
the number of non-zero coefficients, since all dia-
gonal elements are non-zero and the others are zero
in (“y). For n-variable ternary function, we derive

-{® [}

10

.(x), . {:é; [lit]}.l.'(x)]

"a“)l

(30)

—— P Y s R P22

Although the number of non-zero coefficients remains
unchanged, the number of coefficients with value 2
varies with different L., The fewer the number of
these coefficients, the simpler is the corresponding
modulo-algebra expansion of a function. Therefore
the optimum procedure can be stated as follows.
Firstly search for the optimal K value under the
K-transform so that the number of non-zero coeffic-
ients is ninimised. Then determine the optimal L
value under L-transform so that the number of coeff-
icients being two is minimum. It may be seen that
only 37 + 2% gearches are necessary for any
n=-variable ternary function, against 6P exhaustive
searches. Consider the above Example 1, we can
find the number of coefficients is being two 1is
ainimus! vhen L = 1, i.e. ¢ N =0, "0 = 1. The

corresponding coefficient vector is:
La(K)] = 15(7)) = 01 00 0 0 0 0 1)t
The corresponding modulo-algebra expansion is:
~ ] ~
£(x;,x) = (X)) © (x)2.(%X))?2

Note that in this case the non-zero coefficients
of all products are of unity value.

Universal-Logic-Modules

Hurst and Tokmen have disclosed a Universal-logic-
module based on modulo-algebra for a ternary system

[5):
Uf(a.B-Y.x) “=a ® 8x @D sz (31)
This may be decomposed into smaller cells:

Ug(aeB,Y,x) = a@ Bx D yx2 = a@x(8D vx) = a® Upx
Here Up(g,n,x) = £ @ nx (32)

It is obvious that a Ug(a,B,y,x)can be realized by
two Up cells as shown in Fig.2. Therefore Un forms
a complete set. The advantages using Up are a
simpler algebraic expression and flexibility in
employment, After exaaining all twenty-seven
single variable ternary functions, it can be shown
that in addition to constants 0, 1 and 2 and vari-
able x itself, nine of them may be realized by only
one Up. They are:

fl(x) = x2, (0,x) f“(x) - x @ x2, (x,x)
fs(x) = 2x, (0,2) fw(x) = 1®x2, (1,x)
flz(x) =1@®x, (1,‘1) fls(x) - 1@ 2x, (1,2)
flS(x) - 2 e ‘2’ (zll) le (x) = 2 Q Xy (231)
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The values 1in brackets express the corresponding
input patterns. Note five of nine are merely
polarities variation of variable x. They are

~ 5]
flz(x) = 1®x, =X, f“(x) =2®x, = X, fe(x) = 2x,
f,0 = 2@ 2, = &, £,() =102, = R,

Thus the various polarities of variable x can be
realized using a single U,.

Realization of ternary logic using
IZL circuits

The basic operations in wmodulo-algebra are wmod-3
addition, and mod-3 multiplication {10]. They ma
be reduced to addition, multiplication and mod-
limit. Here we consider the realization of some
ternary logic circuits.

Polarity-transform circuits

Figs.3(a)-(f) give various polarity~transform circ-~
uits. Fig.3(a) is a complement circuit; Fig.3(b) is
a circuit for multiplication by two. Fig.3(c)-(f)
show how other polarity-transform circuits may be
obtained in terms of appropriate serial connection
of the above two circuits. The function of Figs.
3(e) and (f) 1s the same, but the ci:cuit of (e)
is simpler.

Mod-3 addition
Mod-3 adder is shown 1in Fig.4, It can be seen

that the upper branch creates arithmetic addition,
the lower branch being a mod-3 limiter,

Mod~3 multiplication

The difficulty of realizing multiplication of two
variables consists in the physical interpretation

of multiplicand and multiplier,

?x
‘i
(210) | >° —
(o12)
@
3 =

If product and

by
x A®1 x@2
oy )| Joae) o o1 (200)
© «h

@z

[{-}¥] (210} 120! (102)
)

Re2

(012) (021) (201) (102)

oy
Fig.3 1I2L polarity-transform circuits

1]
No 2 N0 12 Motz xNeo oz
olo[1]2 olzslislos] olofofo oloi]2
1[1]z2]a t)islose 1]ofo]s i1]a]e
wlzlaTe 2los[ o]0 2[ofs]s 2o
® ® . © ®

Fig.4 Mod-3 adder realisation
(a) circuit, (b) legend, (c) K-maps

multiplicand are expressed by using the same phys-
ical measure, say electrical current, then the
multiplier becomes a pure number without any phys-
ical meaning. However, up to now any simple

effective control of amplification 1in terms of
current has not been found. In a binary system,
this difficulty is avoided because the operation
of multiplication and the minimum of two variables

0,1 is the same.

We extend this interpretation into the ternary
system. Fig. 5(a) 1llustrates that the multi-
plication of two variables can be divided into two
operations, The central K-map of Fig.5(a) denotes
minimum of variables, i.e. x A y. Since x Ay =
Xvy, this may be implemented as shown in Fig.5(b).
The RH K-map expresses 2(X*Y), {.e.

!(x+y) .{x+y~2. if x+y »2

0 otherwise

Fig.5(b) gives the total realization. The upper
part implements x A y; the centre realizes i(xﬂ'g,
and the lower is the mod-3 limiter. The functions
of various points A - D are expressed in the
corresponding K-maps shown in Fig,5(d).

Arithmetic circuits

On the bases of mod-3 addition and mod-3 multi-
plication, full-adder and full-multiplier with
carry may be designed. Figs.6(a) and (b) show
their I2L circuits respectively, where C is carry

input and C' {s carry output.

Up_ctreuit

This may be realized by the cascade of s mod-3
multiplier'and a mod-3 adder, as shown in Fig.7.
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Fig.5 Mod-3 multiplier realisation

Conclusions

The modulo-algebra expansion of a ternary function
has been discussed in terms of modulo-algebra &nd
Kronecker product. Because of the six possible
polarities of a ternary variable the minimization
of ternary functions is more complicated than that
of the corresponding binary case. A minimization
procedure has been suggested. Since the mod-3
aultiplier costs are high, the first step 1is a
search for the optimum K to make the number of non-
zero expansion coefficients minimum., On the basis
of this new function, we then find the optimum L
corresponding to the minimum number of product
terms which have coefficients of two. Such a
searching process can be implemented by using a
computer search.

A basic Universal-logic-module, two of which are
capable of realizing any single-variable ternary
function, has also been considered. A number of
I2L circuits realizing various ternary functions
have been proposed.
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